Class: CsvBuilder

The CsvBuilder class implements both the ICsvExtractor and ICsvBuilder interfaces, providing comprehensive functionalities for reading, processing, and constructing CSV data. The class offers flexibility in handling various data structures and customizing CSV processing through its properties and methods.

Constructors:

  1. CsvBuilder()

    • Initializes a new instance of the CsvBuilder class with default options, an empty DataSet, and a MemoryStream for data storage.
  2. CsvBuilder(DataSet dataset)

    • Initializes a new instance of the CsvBuilder class with a provided DataSet, allowing construction based on existing data.
  3. CsvBuilder(Options options, params DataTable[] tables)

    • Initializes a new instance of the CsvBuilder class with specified options and DataTables, facilitating customized CSV building.

Properties:

  1. ValueRenderEvent (Event):

    • Allows subscribing to a delegate event for custom value rendering, providing flexibility during the CSV building process.
  2. Options (Options):

    • Gets or sets the processing options for CSV data, including skip rows, separators, trimming, header modes, and more.
  3. StreamWriter (Private):

    • Manages the writing of CSV data into a MemoryStream, ensuring efficient handling of large datasets.
  4. ValueParser (Private):

    • Represents a delegate for custom value parsing during CSV building.

Methods:

  1. Datasets Methods:

    • Datasets(params DataTable[] dataTables): Creates a CSV builder from an array of DataTables.
    • Datasets(DataSet dataSet): Creates a CSV builder from a DataSet.
    • Datasets(params List<string>[] rows): Creates a CSV builder from an array of lists of strings.
    • Datasets(Options options, params List<string>[] rows): Creates a CSV builder from an array of lists of strings with specified processing options.
  2. Build Method:

    • Build(params int[] columnsTobePresentedForTableIndex): Constructs the CSV data based on provided options and columns to be presented, allowing for customization.
  3. Stream Handling Methods:

    • GetStream(): Retrieves the CSV data as a MemoryStream for further processing or storage.
    • SaveAsFile(string filePath): Saves the CSV data to a file specified by the provided file path.
  4. Read Methods:

    • ReadFile(string filePath, Options options): Reads CSV data from a file with specified processing options.
    • ReadFileTill(string filePath, Func<ReadCriteria, bool> readTillCriteria, Options options): Reads a CSV file until a user-defined condition is met, providing dynamic extraction capabilities.
    • ReadExcelFileToCsv(string excelFilePath): Converts the contents of an Excel file to a CSV extractor.
    • ReadFromText(string csv): Creates a CSV extractor from a CSV-formatted string without specific processing options.
    • ReadFromText(string csvData, Options options): Creates a CSV extractor from a CSV-formatted string with specified processing options.
  5. Data Manipulation Methods:

    • SetValue<T>(int columnNumber, int rowNumber, T value): Sets the value at a specified column and row in the CSV data.
    • GetValue<T>(int columnNumber, int rowNumber): Retrieves the value at a specified column and row in the CSV data.
    • GetRowValues(int rowNumber): Retrieves all values in a specified row.
    • SetRow(int rowNumber, object[] values): Sets all values in a specified row.
  6. ToDataTables Methods:

    • ToDataTables(params StartEndCriteria[] startAndEndCriterias): Converts CSV data into DataTables based on start and end criteria.
    • ToDataTables(bool skipMatchCriteriaValue, params StartEndCriteria[] startAndEndCriterias): Converts CSV data into DataTables based on start and end criteria, with an option to skip matching criteria values.
  7. ToString Method Override:

    • ToString(): Returns a string representation of the CSV extractor, allowing easy inspection of the current state.

Event Handling:

Memory Management:

Optimizations: